
Modeling offensive player movement in
professional basketball
Steven Wu *1 and Luke Bornn1,2

1Department of Statistics and Actuarial Science, Simon Fraser University
2Sacramento Kings

ABSTRACT

The 2013 arrival of SportVU player tracking data in all NBA arenas introduced an overwhelming amount
of on-court information - information which the league is still learning how to maximize for insights into
player performance and basketball strategy. Knowing where the ball and every player on the court are at
all times throughout the course of the game produces almost endless possibilities, and it can be difficult
figuring out where to begin. This article serves as a step-by-step guide for how to turn a data feed of one
million rows of SportVU data from one NBA game into visualizable components you can use to model
any player’s movement. We detail some utility functions that are helpful for manipulating SportVU data
before applying it to the task of visualizing player offensive movement. We conclude with visualizations of
the resulting output for one NBA game, as well as what the results look like aggregated across an entire
season for three NBA stars with very different offensive tendencies.

INTRODUCTION
The introduction of STATS SportVU, a six-camera system installed in every NBA arena, introduced a new
era of sophisticated analytics (Franks et al., 2015b; D‘Amour et al., 2015; Franks et al., 2015a). Previous
to this technology, the most granular type of data was play-by-play: a text log of the major events (shot
attempts, rebounds, etc.) that occur throughout the game. In contrast, SportVU’s spatio-temporal data is
25 frames per second of data on the (x,y) coordinates of each of the ten players on the court, plus (x,y,z)
coordinates of the ball. The result is approximately one million rows per game. For context on how much
data there is to process, each of the 30 NBA teams plays 82 games per season. The resulting data can
quickly become overwhelming to work with, both conceptually and computationally.

Knowing precisely where each player is throughout a game spurs interesting questions about move-
ment. Can we understand how players move with and without the ball? Are we able to simulate player
movement? Such questions also have downstream implications; for example, recent models for estimating
instantaneous possession value rely on an underlying player movement model (Cervone et al., 2016).

Imagine a simulator that approximates movement for each individual player, conditioned on all of
the factors involving the player - front-office decision makers could understand how different lineup
permutations could potentially co-exist on the court at a finer level before committing to irreversible
decisions. This article presents a comprehensive walkthrough of how we turn this raw data into results
that can be used for a first-approximation simulator for NBA player movement on offense, and how this
can help gain new insights on player offensive movement tendencies. We’re going to focus on offensive
movement, as defensive movement is largely a function of the offensive player the defender is guarding.

AVAILABILITY OF THE DATA
The data used in this article is the SportVU data for one sample game, available as a .csv file at https:
//github.com/dsscollection/basketball. There is another GitHub repository, https://
github.com/neilmj, where efforts are made to upload raw SportVU data on a regular basis (Johnson,
2015). Several blog posts exist online that provide examples of varying detail into programatically
accessing the http://stats.nba.com API directly (Reda, 2015) (Forsyth, 2015).

*Contact: Steven Wu at hello@stevenwu.info

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

LOOKING AT THE DATA
To start, we work with the spatio-temporal data coming from a game on November 1st, 2013 featuring the
Miami Heat visiting the Brooklyn Nets. Note that this dataset has only 89868 rows because the spatial
coordinates for the ball and ten players on the court in any given instant are given in one row, not one row
per entity.

Each row in the dataset includes the spatial coordinates (in feet) for all entities on the court for one
moment in time, along with contextual variables. For the uninitiated, the basketball court in an NBA arena
is 94 feet by 50 feet. (0,0) is the corner of the court and (47,25) is the coordinate for center court.

Tables 1 and 2 offer a peek at a sample of the dataset. Table 3 details the important columns in the
sample game.:

Table 1. Sample of dataset’s columns listed in Table 3

time game quarter shot clock game clock x y z
214 8519 2013110117 1 716.44 15.25 28.35 6.89
215 8559 2013110117 1 716.40 14.47 28.21 6.81
216 8599 2013110117 1 716.36 13.98 28.05 6.63

Table 2. Sample of rest of dataset’s columns listed in Table 3

a1 ent a1 x a1 y a1 event possID
214 296572 11.35 26.88 1
215 296572 11.62 26.88 23 1
216 296572 11.90 26.87 1

Table 3. Description of data columns in 2013 11 01 MIA BKN.csv

Column
Name

Data
Type
(Range)

Description

time integer how many milliseconds have passed since the start of the game
game integer a unique identifier for the game that this dataset refers to
quarter integer the quarter of the game (games have at least 4, with possible overtimes)
shot clock numeric number of seconds left in the offensive possession before a turnover occurs
game clock numeric number of seconds left in the quarter
x numeric x coordinate on the court axis for the ball, in feet
y numeric y coordinate on the court axis for the ball, in feet
z numeric z coordinate (perpendicular to court surface) for the ball, in feet
(a|h)i ent integer entity id for the ith player on the court for the (a)way or (h)ome team
(a|h)i x numeric x for the ith player on the court for the (a)way or (h)ome team
(a|h)i y numeric y for the ith player on the court for the (a)way or (h)ome team
(a|h)i event integer event id for the ith player on the court for the (a)way or (h)ome team
possID integer running count of the number of changes in team possession

UTILITY FUNCTIONS
Before getting started with the movement modeling, we define some utility functions (functions which
provide general functionality that are useful and reusable for other applications with the same data).

Labelling Who Has Possession
To begin querying for offensive moments, we create a function add possession data for quarter() that
augments our data by adding two additional columns: one indicating which team has possession, and one
indicating which entity has possession (-1 indicates neither team having possession, such as during the

2/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

time between the game beginning at the tip-off until the moment when a player controls the ball). The
hard work is done for us with the event id column - it contains information on exactly which moment the
possession changes between player to player (the event id for possession is 23). Defensive and offensive
rebound moments, which have their own event id, do not explicitly follow with the possession event id,
so we check for those events too for tracking changes in possession.

add possession data() calls this function for each quarter and stitches together the result before adding
column names to the two new columns of data. Table 4 shows an example of the same rows shown in
Tables 1 and 2, but with the new possession data added.

Table 4. Output of add possession data(): Same rows as Table 1 and 2. Two new columns team w poss
and ent w poss for easy querying of when a particular player or team possesses the ball

a1 ent a1 x a1 y a1 event possID team w poss ent w poss
214 296572 11.35 26.88 1 a 214152
215 296572 11.62 26.88 23 1 a 296572
216 296572 11.90 26.87 1 a 296572

Filtering Out Noisy Offensive Moments
Now that we have appended data that explicitly tells us what team and what entity has possession at
every moment, we could gather all offensive moments by filtering for all rows where the player’s team
possessed the ball by using the newly created team w poss column. However, this would be a bit too
naive, as it would include two cases of moments which we would want filtered out:

1. from when the ball is carried from the team’s own side of the court until when the ball passes over
the midcourt (where players move mostly in a linear fashion to the offensive half of the court)

2. from when a shot attempt has gone up until when the ball either lands in the hoop, in a player’s
hand, or out of bounds (where players either move mostly in a linear fashion toward the hoop to
crash the boards or toward their own hoop to play transition defense)

Including these moments would add a substantial amount of undesirable noise. Movement that occurs
in these two cases don’t reflect the on-ball and off-ball player movement in an offensive possession that
we want to capture and model. What is most interesting about players’ motion on offense is how they
behave from when the possession starts in the half-court up until the possession ends by either a shot
attempt or turnover. The details of how we remove these irrelevant moments from consideration follows
below.

Offensive Moments Before Half Court
Let’s review how an NBA game is structured: teams start out shooting on opposing ends for the first half,
and then switch sides after half-time. To filter for only offensive moments where all offensive players
have crossed the mid-court, we need a function to determine which direction each team is attacking for
each half. One way to do this is to find all moments where a shot occurred for each team, find the average
x coordinate value, and check which team has their average on the left hand side of the court and which
team has their average on the right hand side. This is what we do in get directions of play(), where the
output is shown in Table 5.

Table 5. Output of get directions of play(): one row per team and one column per half

1st 2nd
a right left
h left right

Offensive Moments After Shot Attempts
Immediately after a shot is attempted, a player’s tendency is to usually crash the paint for an offensive
rebound attempt or to run backwards to set up for defense. Using the event id column, we can identify
all row indices where a field goal make/miss is recorded, and all row indices where a ball is possessed or

3/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

rebounded. For every field goal make/miss, we find the closest event that concludes the shot attempt, and
ignore the moments in between.

By encoding this logic into get offensive moments() and applying the function for this game, the
number of total moments to process is reduced from 89868 to 24218. Even though approximately half of
the game is split between playing offense and defense from a team’s perspective, the percentage of rows
kept is lower than expected because we are only keeping moments where the game clock is running.

Filtering Out Offensive Possessions By Player
We need a function that will further filter a team’s offensive moments by removing any moments that
don’t have a player of interest on the court. We do this in get player offensive moments() by checking the
relevant team columns (either away or home) for whether the player entity identifier is in any of the five
entities on the court. Our implementation also removes all columns that won’t be necessary for the follow
up analysis, but this part isn’t strictly necessary.

LeBron James, undisputedly one of the top players in the NBA, is a player in this game with entity
identifier 214152, playing for the away team Miami Heat. Table 6 shows the output of applying this player
filter function. The number of moments reduced only from 24218 to 21257 as LeBron James was on the
court for the majority of play, playing 42:14 out of 48:00 possible minutes for that game.

Table 6. Output of get player offensive moments(): the number of columns is filtered down and we only
store the player’s (x,y) coordinates for each row

time quarter game clock x y team w poss ent w poss
138 11640 1 713.32 73.78 17.32 a 296572
139 11680 1 713.28 74.40 17.24 a 296572
140 11720 1 713.24 75.00 17.15 a 296572
141 11760 1 713.20 75.59 17.06 a 296572
142 11800 1 713.16 76.17 16.98 a 296572
143 11840 1 713.12 76.74 16.91 a 296572

Transposing Offensive Possessions
The last utility function we need is one that transposes all offensive moments on one side of the court
to the other, which we implement in flip coords(). Spatially, a cut from the right-side of the 3-point arc
to the baseline in the 1st half has different (x,y) coordinates than the same cut in the 2nd half. But in
terms of movement on offense, they’re identical movements. To have a consistent frame of reference, we
transpose all moments on the right-hand side to the left-hand side by flipping both the x and y coordinate:
see Table 7 for the output.

Table 7. Output of flip coords(): notice how LeBron James’ first half coordinates are transposed as the
Miami Heat were attacking the right hand side of the court to start the game

time quarter game clock x y team w poss ent w poss
138 11640 1 713.32 20.22 32.68 a 296572
139 11680 1 713.28 19.60 32.76 a 296572
140 11720 1 713.24 19.00 32.85 a 296572
141 11760 1 713.20 18.41 32.94 a 296572
142 11800 1 713.16 17.83 33.02 a 296572
143 11840 1 713.12 17.26 33.09 a 296572

4/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

moments moments

dir of play

team id

add possession data
get directions of play

offensive moments
get offensive moments

Figure 1. Flowchart of operations to transform our raw moments data and extract the relevant offensive
moments for a team of interest

player id

offensive moments

team id

player df

dir of play
get player offensive moments

flipped df

get flipped coords

Figure 2. Flowchart of operations to obtain the relevant offensive moments for a player

5/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

MOVEMENT SIMULATION FUNCTIONS
We use a helpful package called raster (Hijmans, 2016) which provides functionality for transforming
our court space into a grid of equally sized cells by converting it into a RasterLayer object. The
package provides useful functions for referencing back and forth from (x,y) coordinates to cells. For
our implementation, we have V = 600 cells from [0,47]x[0,50] (we constrain ourselves to the left-hand
half-court, since all movement in the offensive possessions are transposed to the left side of the court, and
offensive possessions for each player are such that the ball and the player have crossed the half-court line
for the respective direction of play). V is a parameter you can tune to be higher if you want to grid the
court at a higher precision, at the expense of increased computation time and sparsity in your data.

Motivation
Simulating player movement on offense can sound like a daunting task. A simpler point of view on the
same problem is that one needs to generate a new sensible spatial coordinate given the most recent spatial
coordinates we observed. Such a model for player movement is explained in the aforementioned paper on
estimating expected possession value (Cervone et al., 2016). The paper’s summarized research output is a
framework that uses the SportVU data to perform estimation of the expected number of points obtained
by the end of a possession, by way of a stochastic process model that models the evolution of a basketball
possession. Focusing our attention on the introduced microtransition model, the authors propose a model
that describes player movement when a “major ball movement” does not occur (such as passes, shots,
and turnovers). Though they build separate models for offensive and defensive players, we restrict our
discussion here to the offensive player movement model, since that is the scope of the project.

For each player l, the next locations are given by:

xl(t +1) = xl(t)+α
l
x[x

l(t)− xl(t−1)]+η
l
x(t)

yl(t +1) = yl(t)+α
l
y[y

l(t)− yl(t−1)]+η
l
y(t)

(1)

A player’s coordinate at time t +1 is modelled as position at time t, plus the player’s velocity from
position at time t−1 to time t (weighted by a parameter α l , which we set to 1), plus an η l term which
represents the contribution of higher order derivatives to the player movement (such as acceleration, jerk,
etc.). These dynamics are nonstationary; in other words, the nature of η l alters over space. Intuitively this
makes sense, as players who are almost out of bounds will accelerate away from the edges of the court to
stay in bounds, and players who accelerate toward the basket will generally decelerate when approaching
their attempt to shoot.

When trying to generate a new (xl
t+1,y

l
t+1), we trivially have (xl

t ,y
l
t) and (xl

t−1,y
l
t−1); the challenge

then is to generate a sensible η l value. Instead of estimating the true distribution for η l (which would
involve estimating parameters for each player l) and sampling from that, we can opt for a data driven
approach by collecting all of the η l’s we observe throughout the course of the game for the player, and
then sampling from this collection directly whenever we want to determine a player’s new position on the
court.

Taking the formulas above, setting α l
x,α

l
y = 1 and isolating for η l , we have:

η
l
x(t) = [xl(t +1)− xl(t)]− [xl(t)− xl(t−1)]

η
l
y(t) = [yl(t +1)− yl(t)]− [yl(t)− yl(t−1)]

(2)

From the rearranged equations we can see that player acceleration, which η l captures, is simply the
difference in player l′s velocity observed at the two previous time points. We refer to the collection of
these calculated η ′s as “empirical η ′s”.

Obtaining the Empirical η ′s
Our filtered player moments aren’t a completely connected sequence of movements. An NBA game has
many stoppages; timeouts, out of bounds, and ends of quarters, to name a few. Consider some point in
time t where (xt−1,yt−1) is the last moment recorded of one offensive possession. Since we have filtered
out non-offensive moments, the (xt ,yt) in our dataset is the first moment of a new offensive possession -
very likely in a completely different spatial region. We need some way of recognizing situations like these,

6/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

so that we don’t consider these as natural movements from one location to another in our processing. We
can do this by skipping any t where dist(xt ,yt)> δ , for some δ parameter we choose, which is what we
do in skip this iteration().

We chose δ by looking at the distribution of Euclidean distances from one moment to the next for
LeBron James in our sample game, shown in Figure 1. The 99th percentile was 0.7524233, so we chose
δ = 1 as a safe, round number. For reference, Usain Bolt’s record breaking 28 mph translates to 41 feet
per second which equals 1.64 feet per 1/25th of a second.

0

1000

2000

3000

0.0 0.5 1.0 1.5 2.0

distances

co
un

t

Histogram for distances between moments

Figure 3. Distribution of movement distance from frame to frame for LeBron James for 2013/11/01 vs.
the Brooklyn Nets

Recall that to generate our empirical η ′s, we need (xt−1,yt−1),(xt ,yt), and (xt+1,yt+1) for every
t = 2, . . . ,n−1 (where n = number of player’s offensive moments). In the function get empirical etas(),
we iterate through a given player’s filtered moments t = 2, . . . ,n−1 (excluding t = 1 and t = n because
there is no previous and next moment for those time points, respectively), calculate the results from
Equation 2, and encode the empirical η data in a matrix with 3 columns: cell, ηx and ηy.

Table 8. Output of get empirical etas() for LeBron James’ on-ball data: there are 15425 rows for
off-ball and 4777 rows for on-ball

cell x y
2 253 0.21 -0.34
3 254 0.20 -0.32
4 254 0.20 -0.30
5 254 0.18 -0.27
6 254 0.16 -0.25
7 278 0.16 -0.22

VISUALIZATION
How can we visualize our results to validate what we have done? One way to visualize the empirical
η ′s is to show the average acceleration vector at each cell of the court - see Figure 4 in Cervone et al.
(2016) for the type of image that we seek to produce. The idea is: for each cell v = 1, . . . ,V , if there were
collected data at that cell, we take the cell’s center as the beginning of the arrow and add the average

7/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

flipped df df
filter for on or off ball

empirical etas
get empirical etas

regression inputs

get regression inputs

regression outputs
bayes regression

arrow data

format data to plot

plot
visualize etas

Figure 4. Flowchart of operations to extract the empirical η ′s from a player’s offensive moments and to
produce visualizations

(η l
x,η

l
y) to get the end of the arrow. The length of the arrow directly represents the magnitude of the

average stochastic innovation observed at that cell. This is equivalent to running a linear regression twice,
where each of the ηx, ηy is a response variable, and the X matrix is a one-hot encoded vector of which
cell the η was observed in. However, this will result in a jerky plot (especially with a small sample size of
the one game we are demonstrating). We use Bayesian regression, where we use a precision matrix to
incorporate the spatial information of the cells and its neighbours, to give us smoother averages and thus
a smoother visualization. The function get regression inputs() transforms the empirical η data into the
design matrix and response variable that bayes regression() will use to calculate the smoothed averages.

Table 9. Output of bayes regression() for LeBron James’ on-ball data: the result is a smoothed (x,y) pair
for each of the V=600 cells

ls x ls y
V1 0.003937 -0.006572
V2 0.024007 -0.033389
V3 0.120113 -0.066792
V4 0.714535 0.069823
V5 0.568190 0.078631
V6 0.053480 0.006110

format data to plot() turns our regression outputs into a format that enables straightforward plotting
of our arrows. By applying the averaged magnitudes in each cell to the cell’s center coordinate, the output
can simply be the (x,y) coordinates of the head and tail of each arrow.

Table 10. Output of format data to plot(): (x1, y1) is the center coordinate and (x2, y2) is the coordinate
for the arrow head, for each of the V=600 cells

x1 y1 x2 y2
1 1.000000 49.000000 1.001298 48.999463
2 3.000000 49.000000 3.009110 48.997654
3 5.000000 49.000000 5.048241 48.991181
4 7.000000 49.000000 7.270269 48.976741
5 9.000000 49.000000 9.201791 48.988723
6 11.000000 49.000000 11.269096 48.986372

Lastly, we need a function, visualize etas(), that will take this formatted arrow data and do our plotting.
The colors and size indicate the magnitude of the empirical η vector. For the code to plot the court itself,
we stand on the shoulders of past giants (Gallic, 2014) and leverage existing open source code. The output
of the plotting function for LeBron James in the game we are analyzing is visualized in Figure 5.

8/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

2013/11/01: LeBron James on−ball 2013/11/01: LeBron James off−ball

Figure 5. Visualization of smoothed empirical acceleration vectors for LeBron James for 2013/11/01 vs.
the Brooklyn Nets

CONCLUSIONS
Looking at Figure 5, there are some exaggerated η ′s due to the small sample size of one game. Using
a season’s worth of data for a player, 82 games, results in significantly smoother plots. The smoothed
season plots are generated for the 2015-2016 NBA season for Andre Drummond, LeBron James, and
Steph Curry in Figures 6, 7, and 8 respectively.

Upon visual inspection of these figures, the smoothed out results across an entire season make intuitive
sense and pass the “smell-test” that is commonly applied when analytical methods are tried on sports;
failing the “smell-test” occurs when a result derived from quantitative analysis is completely backwards
from accepted consensus. We conclude with a discussion of how our results provide a visual explanation
behind our intuition that these three NBA stars move using very different styles on offense.

Off-ball Plots
In general, acceleration occurs away from the out-of-bounds lines, as players are penalized with a turnover
in ball possession if they step out of bounds. There is another visible trend of general acceleration toward
the hoop, with the values being higher near the half-court (since players often run from their defensive
half to the offensive half to set up in their team’s offensive sets).

Notice how that half-court effect is the most pronounced for a center like Andre Drummond when
he is without the ball. It is increasingly common to find 7 footers in the NBA like Karl Anthony Towns
and Kristaps Porzingis who can shoot from beyond the 3-point line with ease; however, Drummond’s
offensive contributions are almost exclusively from inside the paint. As the main hub in coach Stan Van
Gundy’s scheme (the same one successfully deployed in the past coaching Dwight Howard in Orlando,
a center with similar strengths and limitations), Drummond’s priority on offense is to occupy the paint
area as quickly as possible. Drummond is also the center anchor of his defense as a shot-blocking rim
protector. Thus, most of his movement in his transition from defense to offense occurs in a straight line
down the middle of the court between both baskets.

LeBron is a perimeter playing forward. Though versatile in the positions that he can play and in the
areas of the court that he can excel in, his primary defensive assignments will have him situated on either
wing. With his extreme athleticism, surrounded by good passers (including a particularly notable outlet
passer for fastbreaks in Kevin Love) and a teammate who can assume primary ball-handling duties in
Kyrie Irving, LeBron can sprint ahead during the transition from defense to offense to attempt a high
percentage fastbreak opportunity. Thus, LeBron’s acceleration is largest coming from the wings.

9/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

Figure 6. 2015-2016 Andre Drummond Empirical η ′s

Steph Curry in comparison has relatively small acceleration values. He is the primary ball-handler on
his team and is much more likely to be leading a fastbreak opportunity with the ball in his hands than
running on the wing without the ball as a finisher like LeBron. Famously known for effortlessly draining
3-point shots several feet past the 3-point line, Curry doesn’t need to accelerate much to end up in a
scoring position once he crosses the half-court line.

On-ball Plots
As a player with traditional NBA center limitations, Drummond does not consistently accelerate with
the ball with an intent to score. His offensive strengths consists of attempting shots within the paint
immediately after catching the ball. His other shot attempts include shots taken after backing his defender
down in the post (which consists of dribbling the ball with his back to the basket to inch closer towards it,
generating almost no acceleration).

LeBron is a prolific driver to the basket with the ball in his hands and has perenially been one of
the league’s best at this skill since he entered the league. He has a unique combination of height, body
strength, and dribbling ability which allows him to deflect and absorb contact from defenders on his way
toward successfully scoring near the rim.

Comparing Curry’s plot to LeBron’s, Curry has an even wider range of angles where he successfully
accelerates toward the hoop while dribbling. Curry’s magic is that he is not hyper athletic like LeBron
(or even a positional counterpart, like Russell Westbrook). His ubiquitous shot-making ability coupled
with one of the best dribbling abilities in the NBA explain why he had a historic offensive season in
his 2015-2016 Most Valuable Player campaign. However, his on-ball plot helps illuminate exactly how
much more action he was able to generate toward the rim with the ball in his hands relative to even a top
performing peer such as LeBron.

10/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

Figure 7. 2015-2016 LeBron James Empirical η ′s

Figure 8. 2015-2016 Steph Curry Empirical η ′s

11/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

Applications
From the discussion of the visualized results for Drummond, Curry, and LeBron, we see that a player’s
empirical η ′s can be used as features to describe different types of playing styles on offense. Analysts of
the NBA are generally interested in methods that can quantify new insights that impact player evaluation.
Comprehensive player evaluation allows teams to tackle higher level questions; some examples include
game preparation (preparing for players on the opposing team) and roster management (scouting for
possible acquisitions to a team’s roster).

Thanks to increased discourse and acceptance of the role of analytics in the NBA, offense has trended
toward a focus on having a higher proportion of field goal attempts of either three-point shots or shots
resulting from drives toward the rim. This has resulted in a premium being placed on finding players
who excel at either skill (or ideally, both). Players who consistently show the ability to attack the basket
with the ball from the perimeter create a lot more value than just an attempt at a high probability field
goal make; they can cause perimeter help defenders to leave their marks which results in uncontested
three-point shots, and they can cause interior help defenders to leave their marks which can result in
easier shots in the paint. These visualizations can help identify such players who can directly cause
disorganization in the opposing team’s defense.

There are some existing metrics which can approximately quantify this skill, but they can come up
short if you want a more complete picture of a player’s ability to drive towards the opposing basket.
Number of drives per game misses the spatial context of each attempt; a general manager would not want
to compose a roster where all their best drivers favor going right, as that can clog up the spacing of the
team’s offense. Number of made layups/dunks per game doesn’t help you find players who execute an
attacking drive correctly at every point in time and miss the final finish. If you can find a player who has
an on-ball plot similar to Steph Curry but can’t finish like him yet, you can acquire him at a discount of
his market value and focus on improving that weakness during player development training. Being able to
quantitatively identify players who have the potential to blossom into stars offers a large edge in the NBA,
where player acquisitions are constrained by salary caps and competing interest from other teams.

REFERENCES
Cervone, D., D‘Amour, A., Bornn, L., and Goldsberry, K. (2016). A Multiresolution Stochastic Process

Model for Predicting Basketball Possession Outcomes.
D‘Amour, A., Cervone, D., Bornn, L., and Goldsberry, K. (2015). Move or Die: How Ball Movement

Creates Open Shots in the NBA.
Forsyth, D. (2015). Exploring nba data in python. http://www.danielforsyth.me/
exploring_nba_data_in_python/. Accessed: 2017-06-21.

Franks, A., Miller, A., Bornn, L., and Goldsberry, K. (2015a). Characterizing the Spatial Structure of
Defensive Skill in Professional Basketball.

Franks, A., Miller, A., Bornn, L., and Goldsberry, K. (2015b). Counterpoints: Advanced Defensive
Metrics for NBA Basketball.

Gallic, E. (2014). Drawing a basketball court with r. http://egallic.fr/
drawing-a-basketball-court-with-r/. Accessed: 2017-06-21.

Hijmans, R. J. (2016). Introduction to the ‘raster‘ package. https://cran.r-project.org/
web/packages/raster/vignettes/Raster.pdf. R package version 2.5-8.

Johnson, N. M. (2015). Basketball data github repository. https://github.com/
neilmj/BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs. Ac-
cessed: 2017-06-21.

Reda, G. (2015). Web scraping 201: finding the api. http://www.gregreda.com/2015/02/15/
web-scraping-finding-the-api/. Accessed: 2017-06-21.

12/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3201v1 | CC BY 4.0 Open Access | rec: 28 Aug 2017, publ: 28 Aug 2017

